HAUSDORFF PROPERTY OF CARTESIAN AND WREATH PRODUCT OF HYPERGRAPHS
نویسندگان
چکیده
منابع مشابه
The Cartesian product of hypergraphs
We show that every simple, (weakly) connected, possibly directed and infinite, hypergraph has a unique prime factor decomposition with respect to the (weak) Cartesian product, even if it has infinitely many factors. This generalizes previous results for graphs and undirected hypergraphs to directed and infinite hypergraphs. The proof adopts the strategy outlined by Imrich and Žerovnik for the c...
متن کاملCartesian product of hypergraphs: properties and algorithms
Cartesian products of graphs have been studied extensively since the 1960s. They make it possible to decrease the algorithmic complexity of problems by using the factorization of the product. Hypergraphs were introduced as a generalization of graphs and the definition of Cartesian products extends naturally to them. In this paper, we give new properties and algorithms concerning coloring aspect...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولThe Grid Property and Product-Like Hypergraphs
Equivalence relations on the edge set of a hypergraph that satisfy the “grid-property” (a certain restrictive condition on diagonal-free grids that can be seen as a generalization of the more familiar “square property” on graphs) play a crucial role in the theory of Cartesian hypergraph products. In particular, every convex relation with the grid property induces a factorization w.r.t. the Cart...
متن کاملPacking Dimension, Hausdorff Dimension and Cartesian Product Sets
We show that the dimension adim introduced by R. Kaufman (1987) coincides with the packing dimension Dim, but the dimension aDim introduced by Hu and Taylor (1994) is different from the Hausdorff dimension. These results answer questions raised by Hu and Taylor. AMS Classification numbers: Primary 28A78, 28A80.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Apllied Mathematics
سال: 2016
ISSN: 1311-1728,1314-8060
DOI: 10.12732/ijam.v29i3.10